(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

a__f(b, X, c) → a__f(X, a__c, X)
a__cb
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__cc

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

a__f(b, X, c) → a__f(X, a__c, X) [1]
a__cb [1]
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3) [1]
mark(c) → a__c [1]
mark(b) → b [1]
a__f(X1, X2, X3) → f(X1, X2, X3) [1]
a__cc [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

a__f(b, X, c) → a__f(X, a__c, X) [1]
a__cb [1]
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3) [1]
mark(c) → a__c [1]
mark(b) → b [1]
a__f(X1, X2, X3) → f(X1, X2, X3) [1]
a__cc [1]

The TRS has the following type information:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none

(c) The following functions are completely defined:


mark
a__c
a__f

Due to the following rules being added:
none

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

a__f(b, X, c) → a__f(X, a__c, X) [1]
a__cb [1]
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3) [1]
mark(c) → a__c [1]
mark(b) → b [1]
a__f(X1, X2, X3) → f(X1, X2, X3) [1]
a__cc [1]

The TRS has the following type information:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

a__f(b, X, c) → a__f(X, b, X) [2]
a__f(b, X, c) → a__f(X, c, X) [2]
a__cb [1]
mark(f(X1, f(X1', X2', X3'), X3)) → a__f(X1, a__f(X1', mark(X2'), X3'), X3) [2]
mark(f(X1, c, X3)) → a__f(X1, a__c, X3) [2]
mark(f(X1, b, X3)) → a__f(X1, b, X3) [2]
mark(c) → a__c [1]
mark(b) → b [1]
a__f(X1, X2, X3) → f(X1, X2, X3) [1]
a__cc [1]

The TRS has the following type information:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

b => 0
c => 1

(10) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(X, 1, X) :|: z' = X, X >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(X, 0, X) :|: z' = X, X >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + X1 + X2 + X3 :|: X1 >= 0, X3 >= 0, X2 >= 0, z = X1, z' = X2, z'' = X3
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 2 }→ a__f(X1, a__c, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 1 }→ a__c :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0

(11) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

a__c -{ 1 }→ 0 :|:
a__c -{ 1 }→ 1 :|:

(12) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(X, 1, X) :|: z' = X, X >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(X, 0, X) :|: z' = X, X >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + X1 + X2 + X3 :|: X1 >= 0, X3 >= 0, X2 >= 0, z = X1, z' = X2, z'' = X3
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

(13) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(14) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

(15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ a__c }
{ a__f }
{ mark }

(16) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {a__c}, {a__f}, {mark}

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: a__c
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(18) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {a__c}, {a__f}, {mark}
Previous analysis results are:
a__c: runtime: ?, size: O(1) [1]

(19) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: a__c
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(20) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {a__f}, {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]

(21) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(22) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {a__f}, {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using PUBS for: a__f
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z + 2·z' + z''

(24) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {a__f}, {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]
a__f: runtime: ?, size: O(n1) [1 + z + 2·z' + z'']

(25) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: a__f
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 3

(26) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 2 }→ a__f(z', 1, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 2 }→ a__f(z', 0, z') :|: z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 3 }→ a__f(X1, 1, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 3 }→ a__f(X1, 0, X3) :|: X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]
a__f: runtime: O(1) [3], size: O(n1) [1 + z + 2·z' + z'']

(27) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(28) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 5 }→ s :|: s >= 0, s <= 1 * z' + 2 * 0 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 5 }→ s' :|: s' >= 0, s' <= 1 * z' + 2 * 1 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 6 }→ s1 :|: s1 >= 0, s1 <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 6 }→ s2 :|: s2 >= 0, s2 <= 1 * X1 + 2 * 1 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]
a__f: runtime: O(1) [3], size: O(n1) [1 + z + 2·z' + z'']

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: mark
after applying outer abstraction to obtain an ITS,
resulting in: EXP with polynomial bound: ?

(30) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 5 }→ s :|: s >= 0, s <= 1 * z' + 2 * 0 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 5 }→ s' :|: s' >= 0, s' <= 1 * z' + 2 * 1 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 6 }→ s1 :|: s1 >= 0, s1 <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 6 }→ s2 :|: s2 >= 0, s2 <= 1 * X1 + 2 * 1 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed: {mark}
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]
a__f: runtime: O(1) [3], size: O(n1) [1 + z + 2·z' + z'']
mark: runtime: ?, size: EXP

(31) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: mark
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 20 + 8·z

(32) Obligation:

Complexity RNTS consisting of the following rules:

a__c -{ 1 }→ 1 :|:
a__c -{ 1 }→ 0 :|:
a__f(z, z', z'') -{ 5 }→ s :|: s >= 0, s <= 1 * z' + 2 * 0 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 5 }→ s' :|: s' >= 0, s' <= 1 * z' + 2 * 1 + 1 * z' + 1, z' >= 0, z = 0, z'' = 1
a__f(z, z', z'') -{ 1 }→ 1 + z + z' + z'' :|: z >= 0, z'' >= 0, z' >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 0 + X3, X3 >= 0
mark(z) -{ 6 }→ s1 :|: s1 >= 0, s1 <= 1 * X1 + 2 * 0 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 6 }→ s2 :|: s2 >= 0, s2 <= 1 * X1 + 2 * 1 + 1 * X3 + 1, X1 >= 0, z = 1 + X1 + 1 + X3, X3 >= 0
mark(z) -{ 2 }→ a__f(X1, a__f(X1', mark(X2'), X3'), X3) :|: X1 >= 0, X3' >= 0, X2' >= 0, X1' >= 0, X3 >= 0, z = 1 + X1 + (1 + X1' + X2' + X3') + X3
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1

Function symbols to be analyzed:
Previous analysis results are:
a__c: runtime: O(1) [1], size: O(1) [1]
a__f: runtime: O(1) [3], size: O(n1) [1 + z + 2·z' + z'']
mark: runtime: O(n1) [20 + 8·z], size: EXP

(33) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(34) BOUNDS(1, n^1)